
ON SEGMENT BASED IMAGE FUSION  
 

M. Ehlers, A. Greiwe and D. Tomowski  
 

Institute for Geoinformatics and Remote Sensing - IGF 
University of Osnabrueck, D-49074 Osnabrueck, Germany 

mehlers@igf.uni-osnabrueck.de  
 
KEY WORDS: Image fusion, segmentation, classification, multisensor analyses 
 
ABSTRACT: 

 
In this paper, we will investigate techniques for the combination of image fusion and segment based image analysis. We describe a 
color preserving iconic fusion with subsequent segmentation and classification, a ‘cookie cutter’ approach for the integration of high 
resolution RGB and low resolution hyperspectral image data and a decision based fusion technique, that combine high resolution 
panchromatic data with multispectral images. We will show that the combination of segment based image analysis and fusion 
techniques at iconic, feature and decision level can indeed improve the final analysis and can be seen as a first step to an automated 
processing line. 
 

1. INTRODUCTION 
 
The availability of remote sensing data that are needed for 
global, regional and local monitoring has greatly increased over 
the recent years. While the increase in spatial resolution for 
digital images has been hailed as a significant progress, 
methods for their automated analyses (i.e. land cover mapping, 
change analysis, GIS integration) are still in the process of 
being developed. Object (or segment) based preprocessing 
techniques seem to be an adequate methodology because inter-
class variances can be minimized and the image interpretation 
techniques of the human eye be mimicked. However, the 
question of appropriate data fusion techniques within this 
context has hardly been addressed. 
 
Over the last years, image fusion techniques have gained a 
renewed interest within the remote sensing community. The 
reason for this is that in most cases the new generation of 
remote sensors with very high spatial resolution records image 
datasets in two separate modes: the highest spatial resolution is 
obtained for panchromatic images whereas multispectral 
information is associated with lower spatial resolution. The 
ratios between panchromatic and multispectral imaging modes 
of one sensor vary between 1:2 and 1:5. For multisensor fusion, 
ratios can exceed 1:20 (e.g. Ikonos and SPOT merge). 
Consequently, for analyses that require both, high spatial and 
spectral information, fusion techniques have to be developed to 
extract ‘the best of both worlds’. The term ‘fusion’ exists in 
different forms in different scientific communities (see, for 
example, Edwards and Jeansouline, 2004). 
 
Usually, the imaging community uses it to address the problem 
of sensor fusion, where images from different sensors (or 
different modes of one sensor) are combined. They can be 
classified into three levels: pixel level (iconic), feature level 
(symbolic) and knowledge or decision level (Pohl and Van 
Genderen, 1998). 
 
Until now, of highest relevance for remote sensing data 
processing and analysis have been techniques for iconic image 
fusion for which many different methods have been developed 
and a rich theory exists. Unfortunately, for many fusion 
techniques we experience more or less significant color shifts 
which, in most cases, impede a subsequent automated analysis 

(Ehlers and Klonus, 2004). Even with a fusion technique that 
preserves the original spectral characteristics, automated 
techniques do not produce the desired results because of the 
high resolution of the fused datasets.  
 
For this purpose, feature based or decision based fusion 
techniques are employed that are usually based on empirical or 
heuristic rules. Because a general theory is lacking, fusion 
algorithms are usually developed for certain applications and 
datasets. To discuss the advantages and disadvantages on 
segment based image fusion techniques, we introduce three 
fusion methods (‘Ehlers fusion’, ‘cookie cutter‘ approach and a 
decision based data fusion) in this paper. We will show, that the 
feature and decision based fusion approach is the most 
promising path of the two processing paradigms. 
 

2. METHODOLOGY 
 
2.1 Iconic fusion with segmentation and classification 
 
The test dataset for the demonstration of the iconic fusion is a 
panchromatic SPOT image (recording date 16 March 2003) 
with 5 m pixel size and a multispectral Landsat ETM image 
(bands 1 - 5 and 7) with 30 m ground pixel size. A 1024 x 1024 
subset of the SPOT image (Fig. 1) showing a region east of the 
City of Aachen (Germany) was registered to ground coordinates 
(German Gauß-Krüger system) and served as the master image. 
The Landsat image (Fig. 2) was registered to the SPOT image 
and resampled to 5 m pixel size using a nearest neighbour 
resampling algorithm.  
 
2.1.1 Fusion technique 
 
An overview flowchart of the Ehlers Fusion is presented in Fig. 
3. The first step is to transform the low resolution multispectral 
image into an Intensity-Hue-Saturation (IHS) image working 
with three selected bands (RGB). Next, the panchromatic image 
P and the intensity component I are transformed into the 
spectral domain using a two-dimensional Fast Fourier 
Transform (FFT). The power spectrum of both images is used 
to design the appropriate low pass filter (LP) for the intensity 
component and high pass filter (HP) for the high resolution 
panchromatic image. Based on the ratio of pixel sizes between 
the high and low resolution images, cut-off frequencies for 



these filters can be established (Ehlers et al. 1984). Filtering 
will be directly performed in the frequency domain as it 
involves only multiplications. An inverse FFT transforms both 
components back into the spatial domain. The low pass filtered 
intensity (ILP) and the high pass filtered panchromatic band 
(PHP) are added and matched to the original intensity histogram. 
At the end, an inverse IHS transform converts the fused image 
back into the RGB domain (Fig. 4). More information can be 
found in Ehlers and Klonus (2004) and Klonus (2005). 
 

 
Figure 1. Panchromatic SPOT-5 image of 16 March 2003 (5 m 

pixel size) 
 

 
Figure 2. Landsat ETM image (bands 1, 2, and 3) of 26 June 

2001 registered to the SPOT-5 image and resampled 
to 5 m pixel size 

 
The second step is to perform a segment based image analysis 
on the iconic fused image data. For the segmentation and 
classification we used the segmentation and minimum-distance 
algorithm in eCognition. As result (Fig. 5) we created a map 
with the classes "settlement" and "non-settlement" through a 

supervised classification.  
 

 
Figure 3. FFT based filter fusion using a standard IHS 

transform 
 
2.1.2 Results 
 

 
Figure 4. SPOT/ETM IHS image fusion after FFT based 

filtering 
 
For a thorough quantitative evaluation, we compared the results 
of the FFT-based Ehlers fusion (Fig. 4) with the results for the 
same examination area for a number of standard fusion 
algorithms. So far, all tests concluded that the Ehlers fusion was 
optimal for the preservation of spectral characteristics which is 
required for any subsequent classification or interpretation. 
(Klonus & Ehlers 2006).  
 
Additionally, we did some preliminary assessments of the 
results of the segment-based classification approach with the 
fused image data (Fig. 5). It is evident that the class 
“settlement” (red) contains agriculture areas (border regions of 
fields) as well as streets (elongated segments with a similar 
spectral signature as the class “settlement”) outside the 
settlement regions. Based on manually digitized ground-truth 
data, we can calculate users’ and producers’ accuracy 
(Congalton and Green, 1993). As result, we achieved a users’ 
accuracy of about 50 % and A producers’ accuracy of about 
88% for the class “settlement”. One has to consider that urban 
classes are usually mixed classes and often show poor results 
compared to natural classes or water. Also, these are just the 
preliminary results of some initial tests which will have to be 
investigated further. However, even at this stage we can 



conclude that fusion and subsequent segmentation does not 
seem to work well for urban settlement detection. 
 

 
Figure 5. Result after a subsequent segmentation and 

classification (settlement in red color) 
 
2.2 ‘Cookie cutter‘ approach 
 
For an analysis of a cookie cutter approach (i.e. segementation 
of the high resolution images and subsequent analysis of these 
segments in the low resolution images) we used hyperspectral 
and high resolution ortho image datasets. Different datasets: 
 

• Digital orthophoto data (LEO-Digital Camera Kodak 
DC14n) 

• Digital elevation model (DEM) derived from cadas-
tral data 

• Digital surface model (DSM) derived from HRSC-A 
image data 

• Hyperspectral image data (HYMAP) 
 
More information about the sensors can be found in Bäumker et 
al. (1998), Neukum (1999), Cocks et al. (1998) and Greiwe 
(2006). The high spatial resolution data produced by LEO were 
digital airphotos. The photos were resampled to a spatial ground 
resolution of 0.25 m. An orthoimage was generated using 
softcopy photogrammetry software with a resulting horizontal 
accuracy of sx,y = 0.2 m. Information about the surface elevation 
in the study area exists in two datasets: 
 

• Digital elevation model (DEM, derived from cadastral 
data, grid size 12.5 m, vertical accuracy 0.5 m) 

• Digital surface model (DSM, derived from HRSC-A 
image data, grid size 0.5 m, vertical accuracy 0.2 m) 

 
The DSM was normalized (nDSM) by use of DEM data 
(Möller, 2003). The HyMap Sensor records 128 reflective 
bands covering the visible and near infrared range (VNIR) and 
the short wave infrared domain (SWIR) between 0.4 µm and 
2.5 µm. With an operating altitude of 1,500 m and a scan 
frequency of 16 Hz data could be recorded with a GSD of 3 m 
across and 4 m along flight track. 
 

2.2.1 Fusion technique 
 
Our methodological approach for data fusion is characterized 
by an object-oriented segmentation of the geometric high 
resolution orthophotos and a spectral angle mapper (SAM) 
score generation of hyperspectral data. The method is based on 
a mutual support of both data types and a segment based 
endmember selection. The geometric location of the pixel in the 
hyperspectral dataset which represents an endmember of an 
urban surface type is determined by a segmentation of the high 
resolution image data. Pixels that are fully contained in a 
segment are candidates for the definition of reference spectra 
and are considered for the creation of a spectral library. 
 
With the user-specific knowledge contained in spectral 
libraries, the hyperspectral data are classified by a SAM full 
pixel classification approach. The classification results are 
transformed to an 8-bit SAM score by a user-independent 
automated algorithm (see Greiwe et al., 2004 for more details). 
Due to the identical geometric registration of both image data 
the SAM scores provide additional feature values for the image 
segments of the high geometric resolution orthophoto. The end 
product of this approach is a map produced by the classified 
segments. The workflow of our approach is shown in figure 6: 
 

 
Figure 6. Segments of high resolution data (top left) are used 

for endmember selection in hyperspectral data (top 
right). Minimum distance classification and score im-
age are fused using a linear membership function. Re-
sults are produced by a neural network classifier 

 
For classification process a score for each pixel of the 
hyperspectral data has to be determined (SAM score). SAM 
values are calculated by the cosine of a spectral angle for each 
given reference spectra: 
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where  φ =       spectral angle 
 e =  given image spectra 
 r = reference spectra (endmember) 
 n = number of classes 
 
This procedure produces a class image and an additional layer 



of SAM values, the "rule image" which contains n spectral 
angles (φ1….n, see eq. 1) for each image pixel at n given 
endmembers. A value near zero in a rule image represents a 
good fit to a given endmember.  
 

 
Figure 7. SAM score generation for urban class “dark red 

roof”. High scores are indicated as white.  
 

As shown in Fig. 7, dark red roof tiles in the orthophotos (left) 
receive a low value in the corresponding rule image after SAM 
classification (center). The SAM score image (right) is a 
positive 8-bit gray scale image of the rule image. The 
transformation is done by the follow following equation: 
 

maxmin
minmax

max

, 255 cic
cc

ic
ic withs ϕϕϕ

ϕϕ
ϕϕ

≤≤
−
−

⋅=    (2) 

 
where  sc,I  =   SAM-score for Pixel i with respect to  
   class c 
 φi

       =  spectral angle of investigated pixel 
 φc

max  =  spectral angle which leads to a score of zero 
for class c (upper border) 

 φc
min  = best fitting spectral angle for class c     

which leads to a score of 255. 
 n        = number of classes 
 
Further information can be found in Greiwe (2006). 
 
Information about the average height of a segment and the RGB 
values from the orthophotos can be used as additional feature 
information. Like a DSM, the 8-bit SAM score layer is also 
stored in a gray scale image and averaged by overlay operation 
in a GIS. As a result, for each given class, an average SAM 
score is available (Fig. 8).  
 
The creation of image objects (segments) and the final 
classification is performed within the software eCognition. This 
software provides a neural network classifier which allows the 
user to create feature specific membership functions 
considering the SAM scores. 
 

 
Figure 8. Sam scores for a segment 
 
2.2.2 Results 
 

Nineteen different classes were defined with a differentiation in 
material classes in order to prove the methodology. It has to be 
noted that many classes were undistinguishable in the RGB 
image. For example, red roof tops were divided into "red roof 
concrete" and "red roof clay". Three different classification 
scenarios were defined to investigate the performance of the 
presented approach: A minimum distance classification applied 
on the RGB feature space of the ortho image, an additional 
combination with the segment's elevation and at last the 
implementation of SAM scores into the classification process. 
For each of the classification scenarios the overall accuracy was 
estimated (see figure 9). The relative low overall accuracy of 
the RGB scenario could be explained by the strong similarities 
of the defined classes in the visible domain. 

 
Figure 9. Increasing overall classification accuracy 

 
The cookie cutter approach improved the classification 
accuracy by nearly 20%. Using this technique, the benefits of 
an integration of hyperspectral image data into the classification 
process (e.g. the differentiation of surfaces with similar features 
but different materials) could be realized. 

 
2.3 Decision based data fusion 
 
As a basis for the decision based fusion process, we selected a 
high and medium spatial resolution satellites data to develop, 
implement and test a method for the automated detection of 
settlement areas. 
 



 
Figure 10. Panchromatic SPOT-5 image (5 m pixel size) 
 
The high resolution satellite datasets were comprised of 
panchromatic images from SPOT-5 (Fig. 10) with 5 m GSD and 
KOMPSAT-1 with 6.6 m GSD (Fig. 11). Medium resolution 
multispectral data were obtained from Landsat ETM and Aster 
datasets with 30 m and 15 m resolution, respectively. Our 
method was applied to two randomly selected test areas (25 km2 

each), using panchromatic and multispectral satellite data. For 
the first area, data from SPOT (recording date 16 March 2003) 
and Landsat (recording date 26 June 2001) were used, and for 
the second, KOMPSAT-1 (recording date 20 May 2004) and 
Aster data (recording date 3 August 2003).  
 

 
Figure 11. Panchromatic KOMPSAT-1 image (6.6 m pixel size) 
 
The aim was to produce a binary mask with the classes 
"settlement" and "non-settlement". Settlement is understood as 
a sum of real estates, traffic surfaces, commercial areas, sport 
and recreation facilities as well as parks and graveyards (Apel 
and Henckel, 1995). 
 

2.3.1 Fusion technique 
 
Contrary to the iconic image fusion techniques as described 
above, the images we used were rectified to ground coordinates 
but otherwise left in their original format. Parameters such as 
texture and shape were extracted from the high resolution 
panchromatic data, vegetation information from the 
multispectral images (Fig. 12).  

 

Figure 12. Decision based data fusion process.  

Using an adaptive threshold procedure, the information from 
the image datasets were fused and formed a binary mask for the 
areas “settlements candidates” and “definitely no settlements”. 
This process was repeated at a hierarchy of differently sized 
segments with a set of different threshold parameters at each 
level. The hierarchical network (Fig. 13) of segments consists 
of three levels. 

 

 
 
Figure 13. Hierarchical network of segments for the decision 

based fusion 
 

The size of the segments decreases from level 3 (coarse) to 
level 1 (fine) The segmentation in eCognition was applied 
solely to the panchromatic data. The classification algorithm 
starts at the third level. For each segment of the newly 
generated class „settlement“, texture and form parameters as 
well as an average NDVI were calculated. The "gray level co-
occurence" (GLC) matrices (Haralick et al., 1973) that examine 
the spectral as well as the spatial distribution of gray values in 
the image form the basis for the texture calculation. 

 
A GLC matrix describes the likelihood of the transition of the 
gray value i to the gray value j of two neighboring pixels. For 
the differentiation of "settlement" and "not-settlement" we used 
the inverse distance moment (IDM) derivative from the GLC 
matrix. With the application of the IDM, it is possible to 



distinguish between heterogeneous and partially homogeneous 
non-settlement areas (Steinnocher, 1997). 
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where  N  =  row or column number 

 i, j     = grey value combination in row i and 
             column j in the GLC matrix 

 P i,j    = appearance probability of a grey value 
                           pair 

 

The next step of the method starts at the second segmentation 
level, in which the threshold values for the classification 
characteristics (texture, form and NDVI) are increased. 
Additionally, the classification characteristics are only 
calculated for the settlement areas (so-called filial segments) 
that are part of a non-excluding area at the third level (Ehlers et 
al., 2005). At the first segmentation level, the classification 
rules are again applied but with highest restriction parameters. 
Finally, the settlement segments were merged and cleaned by 
automated filter procedures to eliminate small remaining 
agriculture segments and to include urban parks and lakes in the 
settlement areas. Result is a binary mask (called endlevel). 
More details on this algorithm can be found in Ehlers et al. 
(2005) and Tomowski et al. (2006). 
 
2.3.2 Results 
 
Despite the differences between the use datasets, the results 
were very similar (see Fig 14 and Fig. 15). Contiguous 
settlement areas (conurbation areas) were detected with a high 
accuracy. For both test areas the borders between “settlement” 
(red) and “non settlement” (no color) are represented with a low 
level of generalization (borders are not smooth). 
 

 
Figure 14. Binary Mask for the SPOT-5 test dataset image 

(settlement in red color) 
 
It is evident that only a few vegetated areas such as playgrounds 
or parks are missing and small houses or farms outside the 

kernel settlements are not completely included. 
 

 
Figure 15. Binary Mask for the KOMPSAT-1 image (settlement 

in red color) 
To analyze the final accuracy, settlement areas were manually 
digitized and compared to the results of the hierarchical 
processing at each level (Tab. 1) 
 

Hierarchical 
Level 

SPOT-5 / 
Landsat ETM 

KOMPSAT / 
Aster 

3 13.57% 45.28% 
2 69.98% 84.18% 
1 86.90% 95.03% 

Final 96.34% 97.26% 
Table 1. User accuracy for the detection of settlement areas 
 
For both combinations, results are almost identical and exceed 
95% user accuracy at the final level. Kappa values are 0.8427 
and 0.8968 for the first and the second test area, respectively 
(Cohen, 1960). On an evaluation scale as proposed by Ortiz et 
al. (1997), which ranges from "very bad" to “excellent", the 
results for both test areas can be regarded as "excellent". 
 
3. CONCLUSIONS 
 
All presented fusion techniques use the benefits of a 
combination of high spatial and high spectral resolution remote 
sensing.  
The iconic Ehlers fusion has shown much better results than all 
other standard and newly proposed iconic fusion tech-
niques(Klonus and Ehlers, 2006). As result we can summarize, 
that the Ehlers fusion integrates color and spatial features from 
multispectral and panchromatic images, by minimizing color 
distortion, so that the fused image has almost identical spectral 
characteristics as the original image. However, the benefits of 
the introduced iconic image fusion do not automatically lead to 
enhanced classification results for the introduced segment 
oriented classification approach. 
 
The presented feature based ‘cookie cutter‘ approach uses the 
benefits of a fusion of high spatial (othophoto) and high spectral 
resolution image data (hyperspectral) at the feature level. It 



could be proved that a segment based endmember selection 
results in a suitable spectral library (Greiwe 2006). With the 
automated SAM score generation, additional feature values for 
the image segments could be generated. As result, the additional 
inclusion of hyperspectral image data into a classification 
process of high spatial resolution image data shows significant 
improvements (Fig. 9) and allows material differentiation of 
urban surfaces. 
 
With the introduced decision based fusion technique we created 
an efficient and accurate semiautomatic procedure for the 
detection of settlement areas. Through the segment and 
hierarchical classification approach it was possible to improve 
the classification results at each classification step. 
Furthermore, this procedure works equally well with different 
multisensor satellite data without altering the procedure or the 
employed parameters step (Tomowski et al., 2006). 
 
In the comparison to the pixel-been based classification 
procedures, (like the maximum likelihood method) it is evident 
that the introduced feature (‘cookie cutter’) and decision based 
fusion techniques are significant improvements for the design 
of future automated result driven processing lines. Through the 
adoption of object oriented (better: segment oriented) image 
processing methods and data fusion techniques it is possible to 
avoid inter-class variances (like the salt-and-pepper effect 
(Meinel et al., 2001) and to enhance the classification 
accuracies. In our opinion, a feature and/or decision based 
fusion seems to be the most promising technique for the 
improvements of classification accuracy. 
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